
Numpy Cheat Sheet
Python Package
Created By: arianne Colton and Sean Chen

SLICING (INDEXING/SUBSETTING)

numPy (numerical Python)
What is NumPy?

Foundation package for scientific computing in Python
Why NumPy?

• Numpy ‘ndarray’ is a much more efficient way
of storing and manipulating “numerical data”
than the built-in Python data structures.

• Libraries written in lower-level languages, such
as C, can operate on data stored in Numpy
‘ndarray’ without copying any data.

N-DIMENSIONAL ARRAY (NDARRAY)
What is NdArray?

Fast and space-efficient multidimensional array
(container for homogeneous data) providing vectorized
arithmetic operations

Create NdArray np.array(seq1)

seq1 - is any sequence like object,
i.e. [1, 2, 3]

Create Special
NdArray

1, np.zeros(10)

one dimensional ndarray with 10
elements of value 0
2, np.ones(2, 3)

two dimensional ndarray with 6
elements of value 1
3, np.empty(3, 4, 5) *

three dimensional ndarray of
uninitialized values
4, np.eye(N) or
np.identity(N)

creates N by N identity matrix

NdArray version of
Python’s range

np.arange(1, 10)

Get # of Dimension ndarray1.ndim

Get Dimension Size dim1size, dim2size, .. =
ndarray1.shape

Get Data Type ** ndarray1.dtype

Explicit Casting ndarray2 = ndarray1.
astype(np.int32) ***

 * Cannot assume empty() will return all zeros.
It could be garbage values.

 **
Default data type is ‘np.float64’. This is
equivalent to Python’s float type which is 8
bytes (64 bits); thus the name ‘float64’.

 *** If casting were to fail for some reason,
‘TypeError’ will be raised.

SLICING (INDEXING/SUBSETTING)
• Slicing (i.e. ndarray1[2:6]) is a ‘view’ on

the original array. Data is NOT copied. Any
modifications (i.e. ndarray1[2:6] = 8) to the
‘view’ will be reflected in the original array.

• Instead of a ‘view’, explicit copy of slicing via :
ndarray1[2:6].copy()

• Multidimensional array indexing notation :

ndarray1[0][2] or ndarray1[0, 2]

* Boolean indexing :

ndarray1[(names == ‘Bob’) | (names ==
‘Will’), 2:]

‘2:’ means select from 3rd column on

 * Selecting data by boolean indexing
ALWAYS creates a copy of the data.

 * The ‘and’ and ‘or’ keywords do NOT work
with boolean arrays. Use & and |.

* Fancy indexing (aka ‘indexing using integer arrays’)
Select a subset of rows in a particular order :

ndarray1[[3, 8, 4]]

ndarray1[[-1, 6]]
negative indices select rows from the end

 * Fancy indexing ALWAYS creates a
copy of the data.

Created by Arianne Colton and Sean Chen

www.datasciencefree.com
Based on content from

‘Python for Data Analysis’ by Wes McKinney

Updated: August 18, 2016

Setting data with assignment :

ndarray1[ndarray1 < 0] = 0 *

 * If ndarray1 is two-dimensions, ndarray1 < 0
creates a two-dimensional boolean array.

numPy (numerical Python)
5. Boolean arrays methods

Count # of ‘Trues’
in boolean array

(ndarray1 > 0).sum()

If at least one
value is ‘True’

ndarray1.any()

If all values are
‘True’

ndarray1.all()

Note: These methods also work with non-boolean
arrays, where non-zero elements evaluate to True.

6. Sorting

Inplace sorting ndarray1.sort()

Return a sorted
copy instead of
inplace

sorted1 =
np.sort(ndarray1)

7. Set methods

Return sorted
unique values

np.unique(ndarray1)

Test membership
of ndarray1 values
in [2, 3, 6]

resultBooleanArray =
np.in1d(ndarray1, [2,
3, 6])

• Other set methods : intersect1d(), union1d(),
setdiff1d(), setxor1d()

8. Random number generation (np.random)
• Supplements the built-in Python random * with

functions for efficiently generating whole arrays
of sample values from many kinds of probability
distributions.

samples = np.random.normal(size =(3, 3))

 * Python built-in random ONLY samples
one value at a time.

COMMON OPERATIONS
1. Transposing

• A special form of reshaping which returns a ‘view’
on the underlying data without copying anything.

ndarray1.transpose() or
ndarray1.T or
ndarray1.swapaxes(0, 1)

2. Vectorized wrappers (for functions that
take scalar values)
• math.sqrt() works on only a scalar

np.sqrt(seq1) # any sequence (list,
ndarray, etc) to return a ndarray

3. Vectorized expressions
• np.where(cond, x, y) is a vectorized version

of the expression ‘x if condition else y’

np.where([True, False], [1, 2],
[2, 3]) => ndarray (1, 3)

• Common Usages :

np.where(matrixArray > 0, 1, -1)

=> a new array (same shape) of 1 or -1 values
np.where(cond, 1, 0).argmax() *
=> Find the first True element

 *

argmax() can be used to find the
index of the maximum element.
Example usage is find the first
element that has a “price > number”
in an array of price data.

4. Aggregations/Reductions Methods
(i.e. mean, sum, std)

Compute mean ndarray1.mean() or
np.mean(ndarray1)

Compute statistics
over axis *

ndarray1.mean(axis = 1)

ndarray1.sum(axis = 0)

 * axis = 0 means column axis, 1 is row axis.

