
Data Analysis with PANDAS
CHEAT SHEET
Created By: arianne Colton and Sean Chen

DATA STruCTurES

DATA STruCTurES ConTinuED

SERIES (1D)
One-dimensional array-like object containing an array of
data (of any NumPy data type) and an associated array
of data labels, called its “index”. If index of data is not
specified, then a default one consisting of the integers 0
through N-1 is created.

Create Series
series1 = pd.Series ([1,
2], index = ['a', 'b'])

series1 = pd.Series(dict1)*
Get Series Values series1.values

Get Values by Index series1['a']
series1[['b','a']]

Get Series Index series1.index

Get Name Attribute
(None is default)

series1.name

series1.index.name
** Common Index
Values are Added series1 + series2

Unique But Unsorted series2 = series1.unique()

* Can think of Series as a fixed-length, ordered
dict. Series can be substitued into many
functions that expect a dict.

** Auto-align differently-indexed data in arithmetic
operations

DATAFRAME (2D)

Tabular data structure with ordered collections of
columns, each of which can be different value type.
Data Frame (DF) can be thought of as a dict of Series.

Create DF
(from a dict of
equal-length lists
or NumPy arrays)

dict1 = {'state': ['Ohio',
'CA'], 'year': [2000, 2010]}

df1 = pd.DataFrame(dict1)

columns are placed in sorted order
df1 = pd.DataFrame(dict1,
index = ['row1', 'row2']))

specifying index
df1 = pd.DataFrame(dict1,
columns = ['year', 'state'])

columns are placed in your given order
* Create DF
(from nested dict
of dicts)
The inner keys as
row indices

dict1 = {'col1': {'row1': 1,
'row2': 2}, 'col2': {'row1':
3, 'row2': 4} }
df1 = pd.DataFrame(dict1)

* DF has a “to_panel()” method which is the
inverse of “to_frame()”.

** Hierarchical indexing makes N-dimensional
arrays unnecessary in a lot of cases. Aka
prefer to use Stacked DF, not Panel data.

INDEX OBJECTS

Immutable objects that hold the axis labels and other
metadata (i.e. axis name)
• i.e. Index, MultiIndex, DatetimeIndex, PeriodIndex
• Any sequence of labels used when constructing

Series or DF internally converted to an Index.
• Can functions as fixed-size set in additional to being

array-like.
HIERARCHICAL INDEXING
Multiple index levels on an axis : A way to work with
higher dimensional data in a lower dimensional form.
MultiIndex :

series1 = Series(np.random.randn(6), index =
[['a', 'a', 'a', 'b', 'b', 'b'], [1, 2, 3,
1, 2, 3]])

series1.index.names = ['key1', 'key2']

Series Partial
Indexing

series1['b'] # Outer Level

series1[:, 2] # Inner Level

DF Partial
Indexing

df1['outerCol3','InnerCol2']
Or
df1['outerCol3']['InnerCol2']

Swaping and Sorting Levels
Swap Level (level
interchanged) *

swapSeries1 = series1.
swaplevel('key1', 'key2')

Sort Level
series1.sortlevel(1)

sorts according to first inner level

MiSSing DATA

Python NaN - np.nan(not a number)

Pandas * NaN or python built-in None mean
missing/NA values

* Use pd.isnull(), pd.notnull() or
series1/df1.isnull() to detect missing data.

FILTERING OUT MISSING DATA

dropna() returns with ONLY non-null data, source
data NOT modified.

df1.dropna() # drop any row containing missing value

df1.dropna(axis = 1) # drop any column
containing missing values

df1.dropna(how = 'all') # drop row that are all
missing
df1.dropna(thresh = 3) # drop any row containing
< 3 number of observations

FILLING IN MISSING DATA
df2 = df1.fillna(0) # fill all missing data with 0
df1.fillna('inplace = True') # modify in-place
Use a different fill value for each column :
df1.fillna({'col1' : 0, 'col2' : -1})
Only forward fill the 2 missing values in front :
df1.fillna(method = 'ffill', limit = 2)

i.e. for column1, if row 3-6 are missing. so 3 and 4 get filled
with the value from 2, NOT 5 and 6.

Get Columns and
Row Names

df1.columns

df1.index
Get Name
Attribute
(None is default)

df1.columns.name

df1.index.name

Get Values

df1.values

returns the data as a 2D ndarray, the
dtype will be chosen to accomandate all of
the columns

** Get Column as
Series df1['state'] or df1.state

** Get Row as
Series df1.ix['row2'] or df1.ix[1]

Assign a column
that doesn’t exist
will create a new
column

df1['eastern'] = df1.state
== 'Ohio'

Delete a column del df1['eastern']

Switch Columns
and Rows df1.T

* Dicts of Series are treated the same as Nested
dict of dicts.

** Data returned is a ‘view’ on the underlying
data, NOT a copy. Thus, any in-place
modificatons to the data will be reflected in df1.

PANEL DATA (3D)

Create Panel Data : (Each item in the Panel is a DF)
import pandas_datareader.data as web

panel1 = pd.Panel({stk : web.get_data_
yahoo(stk, '1/1/2000', '1/1/2010')
for stk in ['AAPL', 'IBM']})

panel1 Dimensions : 2 (item) * 861 (major) * 6 (minor)

“Stacked” DF form : (Useful way to represent panel data)
panel1 = panel1.swapaxes('item', 'minor')

panel1.ix[:, '6/1/2003', :].to_frame() *

=> Stacked DF (with hierarchical indexing **) :
Open High Low Close Volume Adj-Close
major minor
2003-06-01 AAPL
IBM
2003-06-02 AAPL
IBM

Common Ops :
Swap and Sort **

series1.swaplevel(0,
1).sortlevel(0)

the order of rows also change

* The order of the rows do not change. Only the
two levels got swapped.

** Data selection performance is much better if
the index is sorted starting with the outermost
level, as a result of calling sortlevel(0) or
sort_index().

Summary Statistics by Level
Most stats functions in DF or Series have a “level”
option that you can specify the level you want on an
axis.
Sum rows (that
have same ‘key2’
value)

df1.sum(level = 'key2')

Sum columns .. df1.sum(level = 'col3', axis
= 1)

• Under the hood, the functionality provided here
utilizes panda’s “groupby”.

DataFrame’s Columns as Indexes
DF’s “set_index” will create a new DF using one or more
of its columns as the index.

New DF using
columns as index

df2 = df1.set_index(['col3',
'col4']) * ‡
col3 becomes the outermost index, col4
becomes inner index. Values of col3, col4
become the index values.

* "reset_index" does the opposite of "set_index",
the hierarchical index are moved into columns.

‡ By default, 'col3' and 'col4' will be removed
from the DF, though you can leave them by
option : 'drop = False'.

ESSEnTiAl FunCTionAliTy
INDEXING (SLICING/SUBSETTING) †

 † Same as ‘NdArray’ : In INDEXING : ‘view’
of the source array is returned.

 †

Endpoint is inclusive in pandas slicing with
labels : series1['a':'c'] where
Python slicing is NOT. Note that pandas non-
label (i.e. integer) slicing is still non-inclusive.

Index by Column(s) df1['col1']
df1[['col1', 'col3']]

Index by Row(s) df1.ix['row1']
df1.ix[['row1', 'row3']]

Index by Both
Column(s) and
Row(s)

df1.ix[['row2', 'row1'],
'col3']

Boolean Indexing df1[[True, False]]

df1[df1['col2'] > 6] *
returns df that has col2 value > 6

 *

Note that df1['col2'] > 6 returns a
boolean Series, with each True/False value
determine whether the respective row in the
result.

 Note

Avoid integer indexing since it might
introduce subtle bugs (e.g. series1[-1]).
If have to use position-based indexing,
use "iget_value()" from Series and
"irow/icol()" from DF instead of
integer indexing.

DROPPING ROWS/COLUMNS
Drop operation returns a new object (i.e. DF) :

Remove Row(s)
(axis = 0 is default)

df1.drop('row1')
df1.drop(['row1', 'row3'])

Remove Column(s) df1.drop('col2', axis = 1)

REINDEXING

Create a new object with rearraging data conformed to a
new index, introducing missing values if any index values
were not already present.

Change df1 Date
Index Values to the
New Index Values

(ReIndex default is
row index)

date_index = pd.date_
range('01/23/2010',
periods = 10, freq = 'D')

df1.reindex(date_index)

Replace Missing
Values (NaN) wth 0

df1.reindex(date_index,
fill_value = 0)

ReIndex Columns df1.reindex(columns =
['a', 'b'])

ReIndex Both Rows
and Columns

df1.reindex(index = [..],
columns = [..])

Succinct ReIndex df1.ix[[..], [..]]

ARITHMETIC AND DATA ALIGNMENT
• df1 + df2 : For indices that don’t overlap,

internal data alignment introduces NaN.
1, Instead of NaN, replace with 0 for the indice that is not
found in th df :
df1.add(df2, fill_value = 0)

2, Useful Operations :
df1 - df1.ix[0] # subtract every row in df1 by first row

SORTING AND RANKING

Sort Index/Column †
• sort_index() returns a new, sorted object. Default

is “ascending = True”.
• Row index are sorted by default, “axis = 1” is used

for sorting column.

 † Sorting Index/Column means sort the row/
column labels, not sorting the data.

Sort Data
Missing values (np.nan) are sorted to the end of the
Series by default

Series Sorting sortedS1 = series1.order()

series1.sort() # In-place sort

DF Sorting df1.sort_index(by =
['col2', 'col1'])

sort by col2 first then col1

Ranking
Break rank ties by assigning each tie-group the mean
rank. (e.g. 3, 3 are tie as the 5th place; thus, the result is
5.5 for each)

Output Rank of
Each Element
(Rank start from 1)

series1.rank()

df1.rank(axis = 1)
rank each row’s value

FUNCTION APPLICATIONS

NumPy works fine with pandas objects : np.abs(df1)

Applying a
Function to Each
Column or Row
(Default is to apply
to each column :
axis = 0)

f = lambda x: x.max() -
x.min() # return a scalar value
def f(x): return
Series([x.max(), x.min()])
return multiple values
df1.apply(f)

Applying a
Function
Element-Wise

f = lambda x: '%.2f' %x

df1.applymap(f)
format each entry to 2-decimals

UNIQUE, COUNTS
• It’s NOT mandatory for index labels to be unique

although many functions require it. Check via :
series1/df1.index.is_unique

• pd.value_counts() returns value frequency.

DATA AggrEgATion AnD group opErATionS

DATA AGGREGATION
Data aggregation means any data transformation that
produces scalar values from arrays, such as “mean”,
“max”, etc.
Use Self-Defined
Function

def func1(array): ...

grouped.agg(func1)
Get DF with Column
Names as Fuction
Names

grouped.agg([mean, std])

Get DF with Self-
Defined Column
Names

grouped.agg([('col1',
mean), ('col2', std)])

Use Different Fuction
Depending on the
Column

grouped.agg({'col1' : [min,
max], 'col3' : sum})

GROUP-WISE OPERATIONS AND
TRANSFORMATIONS
Agg() is a special case of data transformation, aka
reduce a one-dimensional array to scalar.
Transform() is a specialized data transformation :
• It applies a function to each group, if it produces

a scalar value, the value will be placed in every
row of the group. Thus, if DF has 10 rows, after
“transform()”, there will be still 10 rows, each one with
the scalar value from its respective group’s value from
the function.

• The passed function must either produce a scalar
value or a transformed array of same size.

General purpose transformation : apply()
df1.groupby('col2').apply(your_func1)

your func ONLY need to return a pandas object or a scalar.
Example 1 : Yearly Correlations with SPX
“close_price” is DF with stocks and SPX closed price columns
and dates index
returns = close_price.pct_change().dropna()

by_year = returns.groupby(lambda x :
x.year)

spx_corr = lambda x : x.corrwith(x['SPX'])

by_year.apply(spx_corr)

Example 2 : Exploratory Regression
import statsmodels.api as sm

def regress(data, y, x):

 Y = data[y]; X = data[x]

 X['intercept'] = 1

 result = sm.OLS(Y, X).fit()

 return result.params

by_year.apply(regress, 'AAPL', ['SPX'])

Categorizing a data set and applying a function to
each group, whether an aggregation or transformation.

 Note
Aggregation of “Time Series” data - please
see Time Series section. Special use case of
“groupby” is used - called “resampling”.

GROUPBY (SPLIT-APPLY-COMBINE)
- Similar to SQL groupby

Compute Group Mean df1.groupby('col2').mean()

GroupBy More Than
One Key

df1.groupby([df1['col2'],
df1['col3']]).mean()

result in hierarchical index consisting
of unique pairs of keys

“GroupBy” Object :
(ONLY computed
intermediate data
about the group key
- df1['col2']

grouped = df1['col1'].
groupby(df1['col2'])

grouped.mean() # gets the mean
of each group formed by 'col2'

Indexing “GroupBy”
Object

select ‘col1’ for aggregation :

df1.groupby('col2')['col1']
or

df1['col1'].
groupby(df1['col2'])

 Note Any missing values in the group are excluded
from the result.

1. Iterating over GroupBy object
“GroupBy” object supports iteration : generating a
sequence of 2-tuples containing the group name along
with the chunk of data.
for name, groupdata in df1.groupby('col2'):

name is single value, groupdata is filtered DF contains data
only match that single value.
for (k1, k2), groupdata in df1.
groupby(['col2', 'col3']):

If groupby multiple keys : first element in the tuple is a tuple
of key values.

Convert Groups
to Dict

dict(list(df1.groupby('col2')))

col2 unique values will be keys of dict

Group Columns
by “dtype”

grouped = df1.groupby([df1.
dtypes, axis = 1)

dict(list(grouped))
separates data Into different types

2. Grouping with functions
Any function passed as a group key will be called once
per (default is row index) value, with the return values
being used as the group names. (This assumes row
index are named)
df1.groupby(len).sum()

returns a DF with row index that are length of the names.
Thus, names of same length will sum their values. Column
names retain.

Created by Arianne Colton and Sean Chen

www.datasciencefree.com

Based on content from
“Python for Data Analysis” by Wes McKinney

Updated: August 22, 2016

DATA WrAngling : MErgE, rESHApE, ClEAn, TrAnSForM

5. Discretization and Binning
• Continuous data is often discretized into “bins” for

analysis.
Divide Data Into 2 Bins of Number (18 - 26], (26 - 35]
‘]’ means inclusive, ‘)’ is NOT inclusive

bins = [18, 26, 35]

cat = pd.cut(array1, bins, labels=[..])
cat is “Categorical” object.

pd.value_counts(cat)

cat = pd.cut(array1, numofBins) # Compute
equal-length bins based on min and max values in array1

cat = pd.qcut(array1, numofBins)# Bins the
data based on sample quantiles - roughly equal-size bins

6. Detecting and Filtering Outliers
• any() test along an axis if any element is “True”.

Default is test along column (axis = 0).
df1[(np.abs(df1) > 3).any(axis = 1)]
Select all rows having a value > 3 or < -3.

Another useful function : np.sign() returns 1 or -1.
7. Permutation and Random Sampling

randomOrder = np.random.permutation(df1.
shape[0])

df2 = df1.take(randomOrder)

8. Computing Indicator/Dummy Variables
• If a column in DF has “K” distinct values, derive a

“indicator” DF containing K columns of 0s and 1s.
1 means exist, 0 means NOT exist.
dummyDf = pd.get_dummies(df1['col2'],
prefix = 'col-')# Add prefix to the K column names

Created by Arianne Colton and Sean Chen

www.datasciencefree.com

Based on content from
“Python for Data Analysis” by Wes McKinney

Updated: August 22, 2016

COMMON OPERATIONS
1. Removing Duplicate Rows

series1 = df1.duplicated() # Boolean series1
indicating whether each row is a duplicate or not.

df2 = df1.drop_duplicates()# Duplicates has
been dropped in df2.

2. Add New Column Based On Value of Column(s)
df1['newCol'] = df1['col2'].map(dict1)

Maps col2 value as dict1‘s key, gets dict1‘s value

df1['newCol'] = df1['col2'].map(func1)

Apply a function to each col2 value
3. Replacing Values

Replace is NOT In-Place

df2 = df1.replace(np.nan, 100)
Replace Multiple Values At Once

df2 = df1.replace([-1, np.nan], 100)
df2 = df1.replace([-1, np.nan], [1, 2])

Argument Can Be a Dict As Well

df2 = df1.replace({-1: 1, np.nan : 2})

4. Renaming Axis Indexes

Convert Index
to Upper Case

df1.index = df1.index.
map(str.upper)

Rename
‘row1’ to
‘newRow1’

df2 = df1.rename(index =
{'row1' : 'newRow1'}, columns
= str.upper)

Optionally inplace = True

gETTing DATA

TEXT FORMAT (CSV)
df1 = pd.read_csv(file/URL/file-like-object,
sep = ',', header = None)

Type-Inference : do NOT have to specify which columns are
numeric, integer, boolean or string.
In Pandas, missing data in the source data is usually empty
string, NA, -1, #IND or NULL. You can specify missing values
via option i.e. : na_values = ['NULL'].
Default delimiter is comma.
Default is first row is the column header.
df1 = pd.read_csv(.., names = [..])

Explicitly specify column header, also imply first row is data
df1 = pd.read_csv(.., names = [..,
'date'], index_col = 'date')

Want 'date' column to be row index of the returned DF

df1.to_csv(filepath/sys.stdout, sep = ',')

Missing values appear as empty strings in the output. Thus,
It is better to add option i.e. : na_rep = 'NULL'
Default is row and column labels are written. Disabled by
options : index = False, header = False

JSON (JAVASCRIPT OBJECT NOTATION) DATA
One of the standard formats for sending data by HTTP
request between web browsers and other applications.
It is much more flexible data format than tabular text from
like CSV.
Convert JSON string
to Python form data = json.load(jsonObj)

Convert Python object
to JSON asJson = json.dumps(data)

Create DF from JSON
df1 =
pd.DataFrame(data['name'],
columns = ['field1'])

XML AND HTML DATA
HTML :

doc = lxml.html.
parse(urlopen('http://..')).getroot()
tables = doc.findall('.//table')
rows = tables[1].findall('.//tr')
XML :
lxml.objectify.parse(open(filepath)).
getroot()

COMBINING AND MERGING DATA
1. pd.merge() aka database “join” : connects
rows in DF based on one or more keys.
• Merge via Column (Common)

df3 = pd.merge(df1, df2, on = 'col2') *

INNER join is default Or use option : how = 'outer/
left/right'

the indexes of df1 and df2 are discarded in df3

 *
Use ALL overlapping column names as the keys
to merge. Good practice is to specify the keys :
on = [‘col2’, ‘col3’].

 * If different key name in df1 and df2, use option :
left_on=’lkey’, right_on=’rkey’

• Merge via Row (Uncommon)
df3 = pd.merge(df1, df2, left_index =
True, right_index = True)

Use indexes as merge key : aka rows with same index
value are joined together.

2. pd.concat() : glues or stacks objects along an
axis (default is along “rows : axis = 0”).

df3 = pd.concat([df1, df2], ignore_index
= True) # ignore_index = True : Discard indexes in df3

If df1 has 2 rows, df2 has 3 rows, then df3 has 5 rows
3. combine_first() : combine data with overlap,
patching missing value.

df3 = df1.combine_first(df2)

df1 and df2 indexes overlap in full or part. If a row NOT
exist in df1 but in df2, it will be in df3. If row1 of df1 and
row3 of df2 have the same index value, but row1’s col3
value is NA, df3 get this row with the col3 data from df2

RESHAPING AND PIVOTING
1. Reshaping with Hierarchical Indexing

series1 = df1.stack()

Rotates (innermost level *) columns to rows as innermost
index level, resulted in Series with hierarchical index.
df1 = series1.unstack()

Rotates (innermost level *) rows to columns as innermost
column level.

 *
Default is to stack/unstack innermost level. If
want a different level, i.e. stack(level =
0) - the outermost level.

Note : Unstacking might introduce missing data if
not all of the values in the level aren’t found in each
of the subgroups. Stacking filters out missing data
by default, i.e. data.unstack().stack()

2. Pivoting
• Common format of storing multiple “time series” in

databases and CSV is :
Long/Stacked Format : “date, stock_name, price”

• However, a DF with these 3 columns data like above
will be difficult to work with. Thus, “wide” format
is prefered : ‘date’ as row index, ‘stock_name’ as
columns, ‘price’ as DF data values.
pivotedDf2 = df1.pivot('date', 'stock_
name', 'price')

Example pivotedDf2 :
AAPL IBM JD
2003-06-01 120.2 100.1 20.8

DESCripTivE STATiSTiCS METHoDS †

 †
Compared with equivalent methods of ndArray,
descriptive statistics methods in Pandas are built
from the ground up to exclude missing data.

 † NA (i.e. NaN) values are excluded. This can be
disabled using the "skipna = False" option.

Column Sums (Use axis = 1 to sum over rows)

series1 = df1.sum()
Returns Index Labels Where Min/Max Values are Attained

df1.idxmin() or df1.idxmax()
Mutiple Summary Statistics (i.e. count, mean, std)
On Non-Numeric Data, Alternate Statistics (i.e. count, unique)

df1.describe()

CORRELATION AND COVARIANCE

• cov(), corr()
• corrwith() - pairwise correlations : aka compute

a DF with a Series. If input is not Series, but another
DF, it will compute the correlations of matching column
names. i.e. returns.corrwith(volumes)

Example : Correlation
import pandas_datareader.data as web

data = {}

for ticker in ['AAPL', 'JD']:

 data[ticker] = web.get_data_
yahoo(ticker, '1/1/2000', '1/1/2010')

 prices = pd.DataFrame({ticker : d['Adj
Close'] for ticker, d in data.iteritems()})

 volumes = ...

returns = prices.pct_change()

returns.AAPL.corr(returns.JD)

Series corr() computes correlation of overlapping, non-NA,
aligned-by-index values in two Series.

TiME SEriES

Created by Arianne Colton and Sean Chen

www.datasciencefree.com

Based on content from
“Python for Data Analysis” by Wes McKinney

Updated: August 22, 2016

• Python standard library data types for date and time :
“datetime”, “time”, “calendar”. †

• Pandas data type for date and time : “Timestamp”. *

Convert String
to DateTime

from datetime import datetime

datetime.strptime('8/8/2008',
'%m/%d/%Y')

Get Time Now now = datetime.now()

DateTime
Arithmetic

from datetime import timedelta

datetime(2011, 1, 8) +
timedelta(12) => 2011-01-20

Timedelta represents temporal difference
between two datetime objects.

Convert String
to Pandas
Timestamp
Type

timestamps = pd.to_
datetime(['8/8/2008', ..])

NaT (Not a Time) is Pandas NA Value for
Timestamp Data
pd.to_datetime('') => NaT
pd.isnull(NaT) => True

Missing value (i.e. empty string)

† “datetime” is widely used, it stores both the date
and time down to microsecond.

* “Timestamp” object can be substituted anywhere
you would use “datetime” object.

PANDA TIME SERIES
Create Time Series
ts1 = pd.Series(np.random.randn(8), index =
[datetime(2011, 1, 2), ..])

ts1 = pd.Series(..., index = pd.date_
range('1/1/2000', periods = 1000))

ts1.index is "DatetimeIndex" Panda class

†

Index value ts1.index[0] is Panda
“Timestamp” object which stores timestamp using
NumPy’s “datetime64” type at the nanoseond
resolution. Further, Timestamp class stores the
frequency information as well as timezone.
ts1.index.dtype => datetime64[ns]

Indexing (Slicing/Subsetting)
Argument can be a string date, datetime or Timestamp.

Select Year of 2001 ts1['2001']

df1.ix['2001']

Select June 2001 ts1['2001-06']

Select From 2001-
01-01 to 2001-08-01

ts1['1/1/2001':'8/1/2001']

Select From 2001-
01-08 On

ts1[datetime(2001, 1, 8):]

Common Operations\
Get Time Series
Data Before
2011-01-09

ts1.truncate(after =
'1/8/2011')

* NY is 4 hours behind UTC during daylight saving
time and 5 hours the rest of the year.

1. Python Time Zone (From 3rd-party pytz library)
Get List of Timezone Names pytz.common_timezones

Get a Timezone Object pytz.timezone('US/
Eastern')

2. Localization and Conversion
Time Series By Default is
Time Zone Naive

ts1.index.tz => None

Specify Time Zone When
Create Time Series

Use option : tz = 'UTC' in
pd.date_range()

Localization From Naive ts1_utc = ts1.
tz_localize('UTC')

Convert to Another Time
Zone Once Time Series
Been Localized

ts1_eastern = ts1_utc.
tz_convert('US/
Eastern')

3. ** Time Zone-aware Timestamp Objects
stamp_utc = pd.Timestamp('2008-08-08
03:00', tz = 'UTC')

stamp_eastern = stamp_utc.tz_convert(...)

Panda’s Time Arithmetic - Daylight Savings Time Transitions
Are Respected :
stamp = pd.Timestamp('2012-11-04 00:30',
tz = 'US/Eastern') => 2012-11-04-00:30:00 -400 EDT
stamp + 2 * Hour() => 2012-11-04-01:30:00 -500 EST

** If two time series with different time zones are
combined, i.e. ts1 + ts2, the timestamps will auto-align
with respect to time zone. The result will be in UTC.

RESAMPLING
Process of converting a time series from one frequency to
another frequency :
1. Downsampling - Aggregating higher frequency
data to lower frequency.

* ts1.resample('M', how = 'mean')

=> Index : 2000-01-31, 2000-02-29, ...

ts1.resample('M', ..., kind ='period')
'period' - Use time-span representation
=> Index : 2000-01, 2000-02, ...

ts1 is one minute data of value 1 to 100 of time :
00:00:00, 00:01:00, ...
ts1.resample('5min', how = 'sum') =>
00:00:00 15 (aka : 1 + 2 + 3 + 4 + 5)
00:05:00 40
Default is left bin edge is inclusive, thus 00:00:00 value in
included in the 00:00:00 to 00:05:00 interval.
Option : closed = 'right' change interval to right
inclusive. Also include option label = 'right' as well :
00:00:00 1
00:05:00 20 (aka : 2 + 3 + 4 + 5 + 6)

DATE RANGES, FRQUENCIES AND SHIFTING
Generic time series in Pandas are assumed to be irreg-
ular, aka have no fixed frequency. However, we prefer to
work with fixed frequency, i.e. daily, monthly, etc.

Take a Look at
“Resampling”
Section

Convert to Fixed Daily Frequency.
Introduce Missing Value (NaN) If Needed
ts1.resample('D', how = ..)

1. Frequencies and Date Offsets
• Frequencies in Pandas are composed of a base

frequency and a multiplier. Base frequencies are
typically referred to by a string alias, like ‘M’ for monthly
or ‘H’ for hourly.
freq = '4H'

freq = '1h30min'

Standard US equity option monthly expirataion, every third
Friday of the month : freq = 'WOM-3FRI'

2. Generating Date Ranges

Default
Frequency
is Daily

pd.date_range(begin, end) Or
pd.date_range(begin or end,
periods = n)

Option freq = 'BM' means last
business day at end of the month

3. Shifting (Leading and Lagging) Data
• Shifting refers to moving data backward and forward

through time.
• Series and DF “shift()” does naive shift, aka index does

not shift, only value. *
ts1 is Daily Data
ts1.shift(1) # move yesterday’s value to today, today
value to tomorrow, etc.

ts1 is Any Time Series Data. Shift Data By 3 Days
ts1.shift(3, freq = 'D') Or
ts1.shift(1, freq = '3D')

Common Use of Shift : To Computer % Change
ts1 / ts.shift(1) - 1

* In the return result from shift(), some data value
might be NaN.

• Other ways to shift data :
from pandas.tseries.offsets import Day,
MonthEnd

datetime(2008, 8, 8) + 3*Day() => 2008-08-11
datetime(2008, 8, 8) + MonthEnd(2) =>
2008-09-30
MonthEnd().rollforward(datetime(2008, 8,
8)) => 2008-08-31

TIME ZONE HANDLING
• Daylight saving time (DST) transitions are a

common source of complication.
• UTC is the current international standard. Time zones

are expressed as offsets from UTC. *

ts1.resample('5min', how = 'ohlc')
returns a DF with 4 columns - open, high, low , close

* Alternate way to downsample : ts1.
groupby(lamba x : x.month).mean()

2. Upsampling and Interpolation * - Interpolate
low frequency to higher frequency. By default missing
values (NaN) are introduced.

df1.resample('D', fill_method = 'ffill')

Forward fills values : i.e. missing value index such as
index 3 will copy value from index 2.

* Interpoation will ONLY apply row-wise.

TIME SERIES PLOTTING
Example : Source Data Format - First Column is Date.
Use first column as the Index, then parse the index values as
Date.
prices = pd.read_csv(.., parse_date =
True, index_col = 0)

px = prices[['AAPL', 'IBM']]
px = px.resample('B', fill_method = 'ffill')

px['AAPL'].plot()

px['AAPL'].ix['01-2008':'03-2012'].plot()

px.ix['2008'].plot()

MOVING WINDOW FUNCTIONS
Like other statistical functions, these functions also
automatically exclude missing data.

pd.rolling_mean(px.AAPL, 200).plot()

pd.rolling_std(px.AAPL.pct_change(), 22,
min_periods = 20).plot()

pd.rolling_corr(px.AAPL.pct_change(),
px.IBM.pct_change(), 22).plot()

PERFORMANCE
• Since “Timestamps” is represented as 64-bit integers

using NumPy’s datetime64 type, it means for each data
point, there is an associated 8 bytes of memory per
timestamp.

• “Creating views” on existing time series or DF do
not cause any more memory to be used.

• Indexes for lower frequencies (daily and up) are stored
in a central cache, so any fixed-frequency index
is a view on the date cache.Thus, low-frequency
indexes memory footprint is not significant.

• Performance-wise, Pandas has been highly optimized
for data alignment operations (i.e. ts1 + ts2) and
resampling.

